Sök i programutbudet

Använd sökfunktionen för att leta efter kurser och program i Chalmers utbildningsutbud. Den programplan och utbildningsplan som avser dina studier är i allmänhet från det läsår du började dina studier.

​​​​​​​​​​​​​

Kursplan för

Läsår
MVE465 - Linjär algebra och analys fortsättning  
Linear algebra and calculus
 
Kursplanen fastställd 2019-02-19 av programansvarig (eller motsvarande)
Ägare: TKKMT
7,5 Högskolepoäng
Betygskala: TH - Fem, Fyra, Tre, Underkänd
Utbildningsnivå: Grundnivå
Huvudområde: Matematik
Institution: 11 - MATEMATISKA VETENSKAPER


Undervisningsspråk: Svenska
Anmälningskod/tillfälleskod: 53134
Sökbar för utbytesstudenter: Nej
Endast studenter med kurstillfället i programplan

Modul   Poängfördelning   Tentamensdatum
Lp1 Lp2 Lp3 Lp4 Sommarkurs Ej Lp
0115 Laboration 1,5hp Betygskala: UG   1,5hp    
0215 Tentamen 6,0hp Betygskala: TH   6,0hp   16 Jan 2020 fm H   06 Apr 2020 fm DIST   24 Aug 2020 em J

I program

TKBIO BIOTEKNIK, CIVILINGENJÖR, Årskurs 1 (obligatorisk)
TKKEF KEMITEKNIK MED FYSIK, CIVILINGENJÖR, Årskurs 1 (obligatorisk)
TKKMT KEMITEKNIK, CIVILINGENJÖR, Årskurs 1 (obligatorisk)

Examinator:

Alexey Geynts

  Gå till kurshemsida


Behörighet:

För kurser på grundnivå inom Chalmers utbildningsprogram gäller samma behörighetskrav som till de(t) program där kursen ingår i programplanen.

Kursspecifika förkunskaper

Kunskaper motsvarande innehållet i kursen Envariabelanalys och analytisk geometri.

Syfte

Kursens syfte är att, tillsammans med övriga matematikkurser, ge en matematisk allmänbildning som är så användbar som möjligt i fortsatta studier och teknisk yrkesverksamhet. Kursen skall på ett logiskt och sammanhängande sätt ge sådana kunskaper i matematisk analys i en och flera variabler samt linjäralgebra och matlab som är nödvändiga för övriga kurser på K,- Bt- och Kf-programmen.

Lärandemål (efter fullgjord kurs ska studenten kunna)

  • definiera begreppet integral och redogöra för sambandet mellan derivata och integral
  • tillämpa och motivera metoder för att beräkna integraler både analytiskt och numeriskt, det senare även med MATLAB
  • förklara innebörden av en ordinär differentialekvation och dess riktningsfält och även kunna ställa upp en differentialekvation utgående från en beskrivande text
  • tillämpa och motivera både analytiska och numeriska metoder för att lösa ordinära differentialekvationer, det senare även med MATLAB
  • redogöra för och kunna tillämpa de begrepp inom linjär algebra som tas upp i kursen (se innehåll nedan)
  • kombinera kunskaper om olika begrepp i praktisk problemlösning
  • utnyttja programspråket MATLAB för problemlösning

Innehåll

  • Linjära avbildningar, matrisframställning och enkla tillämpningar
  • Matrisalgebra, invers matris och linjära ekvationssystem
  • Euklidiska rummet Rn, linjärt oberoende, underrum, kolonnrum och nollrum, baser, basbyte, dimension, rang
  • Egenvärden, reella och komplexa egenvärden, egenvektorer, diagonalisering
  • Ortogonal projektion på delrum, ortonormal bas, minsta kvadrat-meoden, spektralsatsen
  • Determinanter
  • Primitiva funktioner
  • Riemannintegralen och integrationsmetoder, integration av rationella funktioner och vissa andra funktioner
  • Generaliserade integraler
  • Tillämpningar på integraler: Area, volym, kurvlängd, rotationskroppars area och volym
  • Komplexa tal, algebrans fundamentalsats
  • Ordinära differentialekvationer: 1:a ordningens ekvation allmänt Analytisk lösning av separabla och linjära ekvationer. Andra ordningens linjära ekvationer med konstanta koefficienter, svängningsekvationen i olika tappningar. Linjära av högre ordning.
  • System av första ordningens differentialekvationer med konstanta koefficienter
  • Numeriska metoder för beräkning av integraler och lösning av ordinära differentialekvationer och implementering av metoderna i MATLAB
  • Gemensamt projekt med kemi där MATLAB utnyttjas för problemlösning

Organisation

Undervisningen ges i form av föreläsningar, lektioner i mindre grupper samt studioövningar med MATLAB. Mer detaljerad information ges på kursens webbsida före kursstart. Se: http://www.chalmers.se/math/SV/utbildning/grundutbildning-chalmers/arkitekt-och/kemiteknik http://www.chalmers.se/math/SV/utbildning/grundutbildning-chalmers/arkitekt-och/kemiteknik-med-fysik http://www.chalmers.se/math/SV/utbildning/grundutbildning-chalmers/arkitekt-och/bioteknik

Litteratur

Kurslitteratur anges på kursens webbsida före kursstart.

Examination inklusive obligatoriska moment

Mer detaljerad information om examinationen ges på kursens webbsida före kursstart. Exempel på examinationsformer som kan förekomma är:
-utvalda uppgifter redovisas muntligt eller skriftligt för lärare under kursens gång
-annan dokumentation av kunskapsutvecklingen
-projektarbete enskilt eller i grupp
-skriftlig eller muntlig tentamen under och/eller i slutet av kursen
-problem/uppgifter löses med dator och redovisas skriftligt och/eller vid dator.


Publicerad: on 24 jan 2018.