Sök i programutbudet

Använd sökfunktionen för att leta efter kurser och program i Chalmers utbildningsutbud. Den programplan och utbildningsplan som avser dina studier är i allmänhet från det läsår du började dina studier.

​​​​​​​​​​​​​

Kursplan för

Läsår
TMS016 - Spatial statistik och bildanalys  
Spatial statistics and image analysis
 
Kursplanen fastställd 2018-02-06 av programansvarig (eller motsvarande)
Ägare: MPENM
7,5 Högskolepoäng
Betygskala: TH - Fem, Fyra, Tre, Underkänd
Utbildningsnivå: Avancerad nivå
Huvudområde: Matematik
Institution: 11 - MATEMATISKA VETENSKAPER


Undervisningsspråk: Engelska
Sökbar för utbytesstudenter: Ja

Modul   Poängfördelning   Tentamensdatum
Lp1 Lp2 Lp3 Lp4 Sommarkurs Ej Lp
0101 Tentamen 7,5hp Betygskala: TH   7,5hp   05 Jun 2019 fm M   Kontakta examinator   28 Aug 2019 em SB  

I program

MPAPP TILLÄMPAD FYSIK, MASTERPROGRAM, Årskurs 1 (valbar)
MPBME MEDICINSK TEKNIK, MASTERPROGRAM, Årskurs 2 (valbar)
MPCAS KOMPLEXA ADAPTIVA SYSTEM, MASTERPROGRAM, Årskurs 2 (valbar)
MPCAS KOMPLEXA ADAPTIVA SYSTEM, MASTERPROGRAM, Årskurs 1 (obligatoriskt valbar)
MPENM MATEMATIK OCH BERÄKNINGSVETENSKAP, MASTERPROGRAM, Årskurs 1 (obligatoriskt valbar)

Examinator:

David Bolin


  Gå till kurshemsida

Behörighet:


För kurser på avancerad nivå gäller samma grundläggande och särskilda behörighetskrav som till det kursägande programmet. (När kursen är på avancerad nivå men ägs av ett grundnivåprogram gäller dock tillträdeskrav för avancerad nivå.)
Undantag från tillträdeskraven: Sökande med en programregistrering på ett program där kursen ingår i programplanen undantas från ovan krav.

Kursspecifika förkunskaper

En grundläggande kurs i matematisk statistik samt MVE170 eller motsvarande kurs i stokastiska processer.

Syfte

Kursens syfte är att förmedla grundläggande kunskap om modeller och metoder med praktiska tillämpningar inom spatial statistik och bildanalys.

Lärandemål (efter fullgjord kurs ska studenten kunna)

- utföra grundläggande bildbehandling, inklusive filtering och brusreducering.

- identifiera och beskriva stokastiska modeller och analysmetoder för problem inom spatial statistik och bildanalys.

- implementera datorprogram för att lösa statistiska problem inom bildanalys med en given analysmetod.

- skriftligt och muntligt redovisa motiveringar, tillvägagångssätt och slutsatser vid lösning av ett givet statistiskt problem.

- föreslå och analysera stokastiska modeller för problem inom spatial statistik och bildanalys.

Innehåll

Grundläggande metoder för filtrering och mönsterigenkänning i bilder. Statistiska metoder för klassificering och rekonstruktion. Stokastiska fält, Gaussiska fält, Markovfält, Gaussiska Markovfält och punktprocesser. Kovariansfunktioner, Kriging och simuleringsmetoder för stokastisk inferens. Tillämpningar inom klimat, miljöstatistik, fjärranalys, mikroskopi, fotografi och medicinsk bildbehandling.


Organisation

Föreläsningar samt datorövningar där MATLAB eller R används. En viktig del av kursen är projektarbete som redovisas i en projektrapport och presenteras vid ett seminarium.


Litteratur

Anges på kurshemsidan senast åtta veckor innan kursstart.

Examination inklusive obligatoriska moment

Bedömningen baseras på en skriftlig examen och projektarbete.


Sidansvarig Publicerad: on 24 jan 2018.