Sök i kursutbudet

Använda sökfunktionen för att hitta i Chalmers utbildningsutbud, både vad gäller kurser och program. När det finns en kurshemsida visas en hus-symbol som leder till denna sida.
Sök program och utbildningsplaner


Institutionernas kurser för doktorander

Kursplan för

Läsår
MVE150 - Algebra  
Algebra
 
Kursplanen fastställd 2017-02-07 av programansvarig (eller motsvarande)
Ägare: MPENM
7,5 Högskolepoäng
Betygskala: TH - Fem, Fyra, Tre, Underkänd
Utbildningsnivå: Avancerad nivå
Huvudområde: Matematik
Institution: 11 - MATEMATISKA VETENSKAPER


Undervisningsspråk: Engelska
Sökbar för utbytesstudenter: Ja

Kursmoment   Poängfördelning   Tentamensdatum
Lp1 Lp2 Lp3 Lp4 Sommarkurs Ej Lp
0107 Tentamen 7,5hp Betygskala: TH   7,5hp   22 Mar 2019 em SB   10 Jun 2019 fm SB   21 Aug 2019 fm SB  

I program

TKTEM TEKNISK MATEMATIK, CIVILINGENJÖR, Årskurs 3 (valbar)
MPENM MATEMATIK OCH BERÄKNINGSVETENSKAP, MASTERPROGRAM, Årskurs 2 (valbar)
MPENM MATEMATIK OCH BERÄKNINGSVETENSKAP, MASTERPROGRAM, Årskurs 1 (obligatoriskt valbar)

Examinator:

Per Salberger


  Gå till kurshemsida

 

Behörighet:


För kurser på avancerad nivå gäller samma grundläggande och särskilda behörighetskrav som till det kursägande programmet. (När kursen är på avancerad nivå men ägs av ett grundnivåprogram gäller dock tillträdeskrav för avancerad nivå.)
Undantag från tillträdeskraven: Sökande med en programregistrering på ett program där kursen ingår i programplanen undantas från ovan krav.

Kursspecifika förkunskaper

Kurs i elementär linjär algebra

Syfte

Kursen ger en introduktion till de viktigaste strukturerna inom abstrakt algebra. De begrepp som är gemensamma för alla algebraiska strukturer såsom
homomorfier, isomorfier och kvotobjekt betonas särskilt. Mer än hälften av kursen ägnas åt gruppteori. Denna teori har många tillämpningar inom fysik och kemi. T.ex. används grupper för att klassificera elmentarpartiklar och för att studera symmetrier för kristaller. Gruppteori används även inom de flesta former av geometri. Resten av kursen ägnas åt ringteori. Som viktiga exempel på ringar studeras kroppar och polynomringar över kroppar

Lärandemål (efter fullgjord kurs ska studenten kunna)

  • definiera och förklara vad en binär operation är.
  • definiera de viktigaste algebraiska strukturerna: grupper, ringar och kroppar.
  • ge exempel på grupper bestående av restklasser av heltal, matriser, permutationer och symmetrier av geometriska objekt.
  • definiera vad en delgrupp och en sidoklass m.a.p. en delgrupp är.
  • använda ekvivalensrelationer för att studera sidoklasser och bevisa Lagranges sats.
  • bilda kvotobjekt av grupper och ringar med hjälp av normala delgrupper och ideal.
  • definiera begreppen homomorfi och isomorfi samt kärna och bild av en homomorfi
  • använda Euklides algoritm för heltal och polynom över en kropp och återge tillhörande teori om entydig primfaktoruppdelning.
  • redogöra för relationen mellan ändliga kroppsutvidgningar och nollställen till polynom över grundkroppen

Innehåll

Operationer, grupper, delgrupper, symmetrier, permutationer, ekvivalensrelationer och partitioner, primtal, aritmetikens fundamentalsats, kongruensräkning, ordning av grupper och element i grupper, cykliska grupper, sidoklasser och Lagranges sats, isomorfier, direkt produkt av grupper, isomorfityper av ändliga abelska grupper, Cayleys sats, grupphomomorfier, bild och kärna, normala delgrupper, kvotgrupper, fundamentala homomorfisatsen, banor, stabilisatorer, Burnsides sats, Sylows sats, definition av ringar och kroppar, integritetsområden,
karakteristik av en kropp, polynomringar, divisionsalgoritmen,
irreducibla polynom, euklidiska ringar, områden med entydig faktorisering, ringhomomorfier, ideal, huvudideal, restklassringar, adjungering av nollställe, något om existens
och konstruktion av ändliga kroppar, nollställen av polynom,
faktorisering i polynomringar, olika talområden.

Organisation

Kursen består av ungefär 15 föreläsningar och 15 lektioner.
Lektionerna ägnas åt demonstrationer av övningsuppgifter i
kursboken.

Litteratur

Durbin: Modern Algebra, John Wiley & Sons

Examination inklusive obligatoriska moment

Examinationen sker genom skriftlig tentamen.


Publicerad: to 02 sep 2010. Ändrad: må 16 jul 2018