Sök i kursutbudet

Använda sökfunktionen för att hitta i Chalmers utbildningsutbud, både vad gäller kurser och program. När det finns en kurshemsida visas en hus-symbol som leder till denna sida.
Sök program och utbildningsplaner


Institutionernas kurser för doktorander

Kursplan för

Läsår
FFM234 - Vektorfält och klassisk fysik
 
Kursplanen fastställd 2017-02-20 av programansvarig (eller motsvarande)
Ägare: TKTFY
4,5 Poäng
Betygskala: TH - Fem, Fyra, Tre, Underkänd
Utbildningsnivå: Grundnivå
Huvudområde: Teknisk fysik
Institution: 16 - FYSIK


Undervisningsspråk: Svenska

Kursmoment   Poängfördelning   Tentamensdatum
Lp1 Lp2 Lp3 Lp4 Sommarkurs Ej Lp
0117 Tentamen 3,0hp Betygskala: TH   3,0hp   23 Okt 2017 em M,  19 Dec 2017 fm SB,  20 Aug 2018 em M
0217 Projekt 1,5hp Betygskala: UG   1,5hp    

I program

TKTFY TEKNISK FYSIK, CIVILINGENJÖR, Årskurs 2 (obligatorisk)

Examinator:

Bitr professor  Christian Forssén


Ersätter

FFM232   Vektorfält och klassisk fysik


  Gå till kurshemsida   Gå till kurshemsida

 

Behörighet:

För kurser på grundnivå inom Chalmers utbildningsprogram gäller samma behörighetskrav som till de(t) program där kursen ingår i programplanen.

Kursspecifika förkunskaper

MVE035 Flervariabelanalys.
TMA671 Linjär algebra och numerisk analys

Syfte

Kursen avser att dels ge en förtrogenhet med de matematiska metoder som används för att undersöka fysikaliska fenomen i det tredimensionella rummet, dels fördjupa kunskaperna i grundläggande klassisk fysik.

Lärandemål (efter fullgjord kurs ska studenten kunna)

Efter fullgjord kurs kan studenten utföra konstruktiv analys av problem inom fysik och tekniktillämpningar som berör fysikaliska storheters variation i rummet. Studenten har särskilt tillägnat sig matematiska färdigheter för derivering och integrering av skalära fält och vektorfält, analys och syntes av fält, inklusive singulariteter. Studenten kan redogöra för fältbegreppet i klassisk fysik, och tillämpa detta på enklare problem inom teorierna för klassisk elektrodynamik (Maxwells ekvationer) och termodynamik (diffusions- och värmeledningsekvationerna). Efter genomgången kurs kan studenten gå vidare med mer avancerade studier inom klassisk fysik.

Det  övergripande målet  är att man skall tillägna sig en färdighet i att använda lådan med matematiska verktyg inom algebra, flervariabelanalys och differentialekvationer för att modellera fysikaliska problem.

  • Behärska fältbegreppet. Skalära fält, vektorfält, tensorfält. Beräkna och skissera ekvipotentialytor och fältlinjer. Räkna ut och förstå gradient, riktningsderivata, divergens, rotation och Laplaceoperatorn i cartesiska koordinater.

  • Förstå och kunna använda kroklinjiga koordinater med ortogonala basvektorer. Givet relationen mellan de kroklinjiga och cartesiska koordinaterna, kunna räkna ut och tolka skalfaktorer. Kunna beräkna gradient, divergens och rotation och Laplaceoperatorn i givna kroklinjiga koordinater (speciellt sfäriska och cylindriska).

  • Kunna beräkna linje-, yt-, och volymintegraler genom parametrisering och i kroklinjiga koordinater. Tillämpa linjeintegral på mekaniskt arbete. Tillämpa ytintegral på flöde genom yta. Tillämpa volymintegral för att integrera en täthet.

  • Kunna använda Gauss och Stokes satser i konkreta beräkningar och för teoretiska  överlägganden.

  • Förstå och kunna härleda kontinuitetsekvationen utgående från en storhets bevarande.

  • Kunna hantera indexnotation (tensornotation), inklusive Einsteins summationskonvention, för vektorer, matriser och mer allmänna tensorer. Förstå och bevisa hur resultat av multiplikation och kontraktion ger tensorer som resultat. Kroneckers delta och Levi-Civita-tensorn. Kryssprodukt, skalär trippelprodukt och determinant i termer av Levi-Civita-tensorn. Identiteter för produkter av två Levi-Civita-tensorer. Identiteter för uttryck med två derivator, t.ex. rot rot.

  • Kunna hantera Diracs deltafunktion i en och flera dimensioner. Approximationer genom smala och höga funktioner. Kunna utföra integraler med deltafunktioner i integranden.

  • Förstå och känna igen enkla typer av singulära fält: punktkälla, linjekälla, virveltråd i termer av deltafunktioner. Kunna utföra integraler med singulära fält. Kunna använda Gauss och Stokes satser i närvaro av singulära källor och virvlar.

  • Kunna och kunna tillämpa kriterierna för existens av skalär potential och vektorpotential till vektorfält. Tolkning och tillämpning av rotationsfrihet i termer av konservativt kraftfält och i termer av elektrostatiskt fält. Tolkning och tillämpning av divergensfrihet i termer av magnetostatiskt fält.
  • Laplaces och Poissons ekvationer. Känna till entydigheten av lösningar för vissa randvillkor: Dirichlets och Neumanns. Kunna lösa genom vettiga ansatser i enkla geometrier med enkla randvärden (separation).

  • Greensfunktioner. Definition av Greensfunktion till Poissons ekvation som lösning till ekvationen med punktkälla. Kunna tillämpa principen för att lösa Poissons ekvation på R2 och R3 med givna källfördelningar.

  • Kunna tillämpa speglingsmetoden för Laplaces ekvation med Dirichlets och Neumanns randvillkor på plan.

  • Kunna härleda och förstå värmeledningsekvationen. Dess relation till Poissons ekvation. Kunna tillämpa Greensfunktionsmetod (man behöver inte kunna Greensfunktionen utantill) för begynnelsevärdesproblem vid värmeledning. Kunna lösa stationära värmeledningsproblem med och utan värmekällor.

  • Visa kännedom om Maxwells ekvationer i vacuum, med källor och strömmar. Kontinuitetsekvationen för elektrisk laddning och ström, och dess relation till Maxwells ekvationer. Tillämpningar på elektrostatiska och magnetostatiska problem: potentialer och vektorpotentialer från laddnings- och strömfördelningar. 

Innehåll

Fältbegreppet i klassisk fysik, skalära fält och vektorfält. Derivering och integrering av fält. Formulering av fältekvationer. Källor och virvlar, superposition, analys och syntes av fält. Potentialer och vektorpotentialer. Lösningar av fältekvationer i enkla fall. Introduktion till randvärdesproblem för fält. Fysikaliska tillämpningar inom teorierna för klassisk elektrodynamik och termodynamik.

Organisation

Undervisningen bedrivs i form av föreläsningar och övningsräkningar/räknestugor. I kursen ingår ett obligatoriskt projekt som inkluderar datorbaserade metoder.

Litteratur

  • "En första kurs i matematisk fysik", Martin Cederwall (nedladdningsbart kompendium)

  • "Mathematical methods for physicists" (7th ed), av Arfken, Weber och Harris, 2013 [Huvudsakligen delar från kapitel 1-10]

  • Övrigt material annonseras på kurshemsidan.
  • Examination

  • Obligatoriskt projekt bestående av datoruppgifter.

  • Kursen avslutas med en skriftlig tentamen främst inriktad på problemlösningsförmåga.

  • Publicerad: to 02 sep 2010. Ändrad: må 16 jul 2018