Sök i kursutbudet

Använda sökfunktionen för att hitta i Chalmers utbildningsutbud, både vad gäller kurser och program. När det finns en kurshemsida visas en hus-symbol som leder till denna sida. Tänk på att välja det läsår du vill se information om.
Sök program och utbildningsplaner

Institutionernas kurser för doktorander


Kursplan för

RRY130 - Radioastronomical techniques and interferometry
Kursplanen fastställd 2012-02-22 av programansvarig (eller motsvarande)
Ägare: MPPAS
7,5 Poäng
Betygskala: TH - Fem, Fyra, Tre, Underkänt
Utbildningsnivå: Avancerad nivå
Huvudområde: Elektroteknik, Teknisk fysik
Institution: 75 - RYMD- OCH GEOVETENSKAP

Undervisningsspråk: Engelska
Sökbar för utbytesstudenter
Blockschema: C

Modul   Poängfördelning   Tentamensdatum
Lp1 Lp2 Lp3 Lp4 Sommarkurs Ej Lp
0112 Tentamen 6,0hp Betygskala: TH   6,0hp   18 Dec 2012 em M,  04 Apr 2013 em V,  23 Aug 2013 fm M
0212 Laboration 1,5hp Betygskala: UG   1,5hp    

I program



Professor  John Conway
Bitr professor  Rüdiger Haas


För kurser inom Chalmers utbildningsprogram gäller samma behörighetskrav som till de(t) program kursen ingår i.

Kursspecifika förkunskaper

Basic knowledge in electromagnetism.


The aim of the course is that students are to attain basic understanding of advanced
techniques in radioastronomy. This includes both single dish operations and
interferometry. The course shall enable the students to plan an astronomical
experiment using interferometry, and to determine the required integration time,
choice of interferometer (resolution, maximum size of mapable structure, fidelity of
image). They should learn to go from raw astronomy interferometry data to a final
image. Furthermore, the course also aims at providing the students with basic
knowledge in interferometry for geodesy. The level of understanding should be such
that the students in their profession as engineers or scientists should be able to actively apply
radioastronomical techniques.

Lärandemål (efter fullgjord kurs ska studenten kunna)

  • describe the basic operation of a radio telescope and its instrumentation
    relate the properties of various astronomical objects (e.g. AGNs, pulsars,
    masers, molecular clouds, the CMB) to requirements on astronomical
    instrumentation such as receivers and telescopes

  • select an appropriate observational technique (e.g. frequency - beam -
    position switching, polarization measurements, fast scanning) for a given
    astronomical object

  • perform basic analysis of single dish data (e.g. spectral line analysis and
    identification, dynamical and intensity mapping)

  • plan, carry out and evaluate a single dish astronomical experiment

  • visualise for a simple two element ('non-tracking') interferometer observing at
    the zenith, the input responses due to point sources at different positions and

  • show that it measures one Fourier component of the brightness distribution

  • describe to others what is meant by 'spatial frequency' in connection with 2D
    Fourier transforms

  • visualise and write computer programs showing that a single interferometer
    baseline samples an ellipse in the u,v plane

  • explain how the dirty image is made and show mathematically that it isthe
    convolution of true source with dirty beam

  • explain how an East-West interferometer can be constructed to minimise

  • explain how closure phases are used to recover phase in redundant arrays
    and how 'hybrid mapping' works

  • describe similarities and difference of radio interferometry with phased arrays
    (i.e in antenna engineering) and Synthetic Aperture Radar (radar remote

  • understand the principles of geodetic VLBI as space geodetic technique and its
    uniqueness for geosciences

  • explain the VLBI data correlation and terms like delay-tracking and fringestopping

  • determine the expected accuracy that can be derived for specific geodtic
    parameters as a function of network geometry and technical setup

  • understand the principles of geodetic VLBI analysis


The course contains the following parts:

* Single dish radioastronomy:
* Fundamental concepts
* Basic antenna theory
* Receiver and signal processing
* Observational methods
* Radioastronomical objects
* Spectral line analysis
* Data handling
* Radio Interferometry for Astronomy and Geodesy
* VLBI correlation
* The 2-element non-tracking interferometer
* The tracking interferometer
* The 2D Fourier transforms
* The aperture plane or 'uv' coverage for example interferometers
* The dirty map and dirty beam
* Deconvolution methods
* Phase errors and their recovery using closure phase and self-calbration
* Comparisons with phased arrays and Synthetic Aperture Radar (SAR)
* Geodetic VLBI data analysis


Problem classes, practical observations, and computer


Lecture notes and Tools of Radioastronomy by K. Rohlfs and T.L. Wilson, Springer Verlag, last edition.


Written exam plus hand in assignments.

Sidansvarig Publicerad: må 13 jul 2020.