Sök i kursutbudet

Använda sökfunktionen för att hitta i Chalmers utbildningsutbud, både vad gäller kurser och program. När det finns en kurshemsida visas en hus-symbol som leder till denna sida. Tänk på att välja det läsår du vill se information om.
Sök program och utbildningsplaner


Institutionernas kurser för doktorander

​​​​​​​​​​​​​​​​​​​​

Kursplan för

Läsår
SSY130 - Applied signal processing
 
Kursplanen fastställd 2012-02-21 av programansvarig (eller motsvarande)
Ägare: MPCOM
7,5 Poäng
Betygskala: TH - Fem, Fyra, Tre, Underkänt
Utbildningsnivå: Avancerad nivå
Huvudområde: Datateknik, Elektroteknik
Institution: 32 - ELEKTROTEKNIK


Undervisningsspråk: Engelska
Sökbar för utbytesstudenter
Blockschema: D

Modul   Poängfördelning   Tentamensdatum
Lp1 Lp2 Lp3 Lp4 Sommarkurs Ej Lp
0107 Tentamen 7,5hp Betygskala: TH   7,5hp   20 Dec 2012 em V,  05 Apr 2013 em V,  27 Aug 2013 em V

I program

MPTSE INDUSTRIAL ECOLOGY, MSC PROGR, Årskurs 2 (valbar)
MPWPS WIRELESS, PHOTONICS AND SPACE ENGINEERING, MSC PROGR, Årskurs 2 (valbar)
MPBME BIOMEDICAL ENGINEERING, MSC PROGR, Årskurs 1 (obligatorisk)
MPCOM COMMUNICATION ENGINEERING, MSC PROGR, Årskurs 1 (obligatorisk)
MPEPO ELECTRIC POWER ENGINEERING, MSC PROGR, Årskurs 2 (valbar)
MPSYS SYSTEMS, CONTROL AND MECHATRONICS, MSC PROGR, Årskurs 1 (obligatoriskt valbar)
MPEES EMBEDDED ELECTRONIC SYSTEM DESIGN, MSC PROGR, Årskurs 2 (valbar)

Examinator:

Professor  Tomas McKelvey


Ersätter

ESS145   Applied signal processing

Kursutvärdering:

http://document.chalmers.se/doc/1aa1092c-1ff8-475f-9701-27bb886ba414


Behörighet:

För kurser inom Chalmers utbildningsprogram gäller samma behörighetskrav som till de(t) program kursen ingår i.

Kursspecifika förkunskaper

Working knowledge of linear algebra, probability theory and signals and systems (especially transforms, filtering, convolution, sampling theorem) is required. Knowledge of random processes is very useful, but not essential. Hence, the course Random signals analysis is recommended. Experience of MATLAB is required.

Syfte

Signal processing involves techniques to recover important information from signals and to suppress irrelevant parts of those signals. The aim of this course is to provide the students with knowledge of standard techniques and applications in digital signal processing. These are relevant for the design and implementation of communication systems, control systems and other measurement systems such as biomedical instrumentation systems. The students are also given the opportunity to practically apply some of the techniques to semi-real signal processing problems and will be given insight into current practice in industry.

Lärandemål (efter fullgjord kurs ska studenten kunna)


  • in both time-domain and frequency-domain analyse the effect of sampling, linear filtering and signal reconstruction

  • explain the relation between the Fourier transform, discrete Fourier transform and fast Fourier transform and apply the discrete Fourier transform to perform block based linear filtering

  • apply linear filter design techniques to construct FIR and IIR filters satisfying given specifications

  • apply LMS, RLS and Kalman filters to linear adaptive filtering problems and do simplified analysis regarding stability and rate of
    convergence

  • apply multirate techniques to signal processing problems to increase efficiency

  • explain how quantization and finite word lengths affect the signal and algorithm quality and calculate the effect on the SNR

  • discuss the effect of using a linear finite dimensional model as an approximation for an infinite dimensional linear systems.

  • implement signal processing algorithms on a DSP-system


Innehåll


  • Review of signal theory concepts: continuous-time and sampled signal representation in both time and Fourier domain, sampling, linear processing (filtering) and continuous-time signal reconstruction (D/A conversion)

  • Review of random processes: mean values, autocorrelation function, spectrum, linear filtering of a white noise process.

  • Filter design and realization: FIR and IIR filter structures, design methodologies, implementation details, matched filters

  • Discrete Fourier transform: Finite data length, Fast Fourier transform (FFT), use of DFT for linear block-based filtering

  • Adaptive filters: Least mean square (LMS), recursive least squares (RLS) and Kalman filtering

  • Multi-rate signal processing: Rate conversion, poly-phase representation, filter banks

  • Finite word length effects: quantization of signal and filter coefficients

  • Implementation on DSP systems

Organisation

The course is comprised of approximately 18 lectures, 6 exercise sessions, 3 hand-in problems and 2 projects.

Litteratur

See course homepage.

Examination

The final grade is based on scores from hand-in problems, projects and a written exam. The projects are mandatory in the sense that they must be passed to pass the course.


Sidansvarig Publicerad: må 13 jul 2020.