Sök i kursutbudet

Använda sökfunktionen för att hitta i Chalmers utbildningsutbud, både vad gäller kurser och program. När det finns en kurshemsida visas en hus-symbol som leder till denna sida. Tänk på att välja det läsår du vill se information om.
Sök program och utbildningsplaner


Institutionernas kurser för doktorander

​​​​​​​​​​​​​​​​​​​​

Kursplan för

Läsår
RRY080 - Radar systems and applications
 
Kursplanen fastställd 2012-02-21 av programansvarig (eller motsvarande)
Ägare: MPWPS
7,5 Poäng
Betygskala: TH - Fem, Fyra, Tre, Underkänt
Utbildningsnivå: Avancerad nivå
Huvudområde: Elektroteknik, Teknisk fysik
Institution: 75 - RYMD- OCH GEOVETENSKAP


Undervisningsspråk: Engelska
Sökbar för utbytesstudenter
Blockschema: D

Modul   Poängfördelning   Tentamensdatum
Lp1 Lp2 Lp3 Lp4 Sommarkurs Ej Lp
0108 Tentamen 7,5hp Betygskala: TH   7,5hp   28 Maj 2013 em V,  14 Jan 2013 em V,  22 Aug 2013 em V

I program

MPWPS WIRELESS, PHOTONICS AND SPACE ENGINEERING, MSC PROGR, Årskurs 1 (obligatoriskt valbar)
MPCOM COMMUNICATION ENGINEERING, MSC PROGR, Årskurs 1 (obligatoriskt valbar)

Examinator:

Docent  Leif Eriksson
Professor  Lars Ulander


Kursutvärdering:

http://document.chalmers.se/doc/b0840148-bed4-4404-9689-6e24dd0b98de


Behörighet:

För kurser inom Chalmers utbildningsprogram gäller samma behörighetskrav som till de(t) program kursen ingår i.

Kursspecifika förkunskaper

Basic knowledge in electromagnetic field theory.

Syfte

This course describes the main properties of radar systems, and how these are selected in designing and optimizing radar systems. System performance is analyzed using concepts from digital signal processing, where different radar systems are used to illustrate the practical applications of the theory.

Lärandemål (efter fullgjord kurs ska studenten kunna)

* describe how radars can be used to measure time-of-flight and Doppler shift
* define resolution and accuracy, and be able to quantify them from a series of measurements
* define the meaning of the term coherent, and be able to compare the performance of coherent with non-coherent radar systems
* draw a simple block diagram for a radar system, and describe the roles of the different components
* be able to derive the radar equation
* use the radar equation to calculate signal-to-noise ratios and received powers for various radar systems
* use simple formulas to give rough estimates for radar cross-section from different objects
* derive for simple radar retro-reflectors the effective area
* describe qualitatively the backscatter from a sphere as a function of frequency polarization, size and orientation
* be able to use surface and volume backscattering coefficients in calculations of received power and clutter-to-noise ratio
* describe how the atmosphere affects the propagation of radar waves
* calculate the distance to the Earth's radio horizon
* describe the effect of multi-path, and be able to calculate the received power for simple geometries relative to its free-space value
* understand the use of random variables to describe noise in radar systems
* derive the form and properties of a matched filter
* derive the statistics for Rayleigh fading
* calculate required signal-to-noise ratio for a given probaility of detection and probability of false-alarm, and for different signal models (Swerling cases) and detector types.
* describe what is meant by pulse compression
* calculate the performance of pulse compression for simple waveforms
* understand how waveform design can improve detection performance
* choose appropriate waveforms for different uses and be able to quantify their performance
* decribe the Nyquist sampling theorem and describe the effects of undersampling
* describe the principles behind Pulse-Doppler radar, ISAR and SAR
* define different parameters for describing a system's impulse response (including ISAR, SAR and the Pulse-Doppler ambiguity function) and to be able to calculate those numerically.
* be aware of different applications of radar systems
* describe why radar is particularly suited for certain applications compared to other techniques
* understand the trade-offs involved in design of radar systems for different applications
* apply principles of radar system design and analysis to different applications and to quantify performance and suggest improvements in design

Innehåll

1. Introduction
- Time-of-flight and Doppler shift measurements
- Coherent vs. non-coherent radar systems
- Antenna gain and beamwidth
- Pulse repetition frequency
- Radar cross section
- Radar equation
2. Radar systems
- Fourier transform
- Nyquist sampling theorem
- Radar hardware blocks
- Antennas
3. Radar scattering
- Simple and complex objects
- Frequency and polarization effects
- Terrain scattering
4. Wave propagation
- Reflection, refraction and attenuation
- Propagation in the atmosphere
- Multi-path effects
5. Detection of radar signals
- Quadrature demodulation
- Detectors and integration
- Signal and noise models
6. Waveforms
- Generalised radar signals
- Matched filter
- Pulse compression
7. Radar performance
- Radar ambiguity function
- Signal-to-noise ratio
- Search radar equation
8. Inverse synthetic aperture radar (ISAR)
9. Synthetic aperture radar (SAR), part 1
10. Synthetic aperture radar (SAR), part 2
11.
Clutter suppression by Doppler filtering
- Pulse-Doppler radar
- MTI radar
12.
Radar system examples
- Weather radar, spaceborne radar etc

Organisation

The course will be based on lectures with theoretical and practical (computer) exercise classes. There will be laboratory work and a visit to radar industry.

Litteratur

"Radar Foundations for Imaging and Advanced Concepts" by Roger J. Sullivan (List Price: US$95.00 ~ 800 kr). The book is also available as an e-book from Chalmers Library. Additional material provided by lecturer.

Examination

Written exam, computer exercises and laboratory work.


Sidansvarig Publicerad: må 13 jul 2020.