Sök i kursutbudet

Använda sökfunktionen för att hitta i Chalmers utbildningsutbud, både vad gäller kurser och program. När det finns en kurshemsida visas en hus-symbol som leder till denna sida. Tänk på att välja det läsår du vill se information om.
Sök program och utbildningsplaner


Institutionernas kurser för doktorander

​​​​​​​​​​​​​​​​​​​​

Kursplan för

Läsår
SSY215 - Model-based signal processing, advanced level
 
Kursplanen fastställd 2009-02-23 av programansvarig (eller motsvarande)
Ägare: MPCOM
7,5 Poäng
Betygskala: UG - Underkänd, Godkänd
Utbildningsnivå: Avancerad nivå
Huvudområde: Elektroteknik
Institution: 32 - ELEKTROTEKNIK


Undervisningsspråk: Engelska

Modul   Poängfördelning   Tentamensdatum
Lp1 Lp2 Lp3 Lp4 Sommarkurs
0108 Projekt 7,5 hp Betygskala: UG   7,5 hp    

I program

MPSYS SYSTEMS, CONTROL AND MECHATRONICS, MSC PROGR - Special research and PhD course, Årskurs 1 
MPCOM COMMUNICATION ENGINEERING, MSC PROGR, Årskurs 2 (valbar)

Examinator:

Professor  Mats Viberg



Behörighet:

För kurser inom Chalmers utbildningsprogram gäller samma behörighetskrav som till de(t) program kursen ingår i.

Kursspecifika förkunskaper

Knowledge of signals and systems (Fourier analysis, filters etc.) in continuous and discrete time. Basic knowledge of probability theory and stochastic processes.

Syfte

Signal processing is really about manipulating measured signals to extract some desired information. Early on, the processing was mainly linear filters and transforms; but with todays technology, much more complicated signal processing algorithms are running in real-time. Several properties of the signal and noise are often unknown, and are learned directly from data (adaptive signal processing). The information content is often given in the form of a physical data model, and the uncertainty is described in terms of statistics. For example, a radar return from a point-like target is easily modeled as a function of its distance and direction, whereas the reflections from unwanted objects (clutter) are considered random. These models are then exploited to extract the sought information. The procedure is often termed parameter estimation. The purpose of this course is to give an overview of the most important approaches to solve such model-based estimation problems. Fundamental limitations on the estimation process are also discussed. The statistical estimation techniques are frequently illustrated using examples from various signal processing applications. A brief introduction to detection theory and classification is also given.

Lärandemål (efter fullgjord kurs ska studenten kunna)

Understand how to model experimental data in simple situations, and make suitable assumptions on the random components in the data
Understand the fundamental limitations of statistical data models, and how these can be used to design experiments
Understand the trade-offs involved in parameter estimation, where computational simplicity is often traded for statistical efficiency
Know how to choose a suitable estimation approch for a given data model and derive the resulting equations/relations
Know how to implement a variety of estimators in Matlab
Know how to evaluate the performance of estimators by computer simulation, and thus compare different approaches
Have a brief knowledge about detection problems and techniques for selecting a suitable model order

Innehåll

Minimum Variance Unbiased Estimation and the Cramer-Rao Lower Bound, Best Linear Unbiased Estimators, Maximum Likelihood Estimation, Least Squares, Method of Moments and Instrumental Variables, Bayesian Estimation, Wiener and Kalman Filters. Introduction to Detection Theory: Binary Hypothesis, Likelihood Ratio Tests, Information-Theoretic Criteria. Application examples from Wireless Communications, Radar Systems and Environmental Measurements.

Organisation

The course is given in the form of one lecture and one problem-solving session per week. After each lecture, a number of problems are assigned, both theoretical and computer simulations (Matlab). During the problem-solving sessions, the students present their solutions to this week's problems.

Litteratur

Steven M. Kay: "Fundamentals of Statistical Signal Processing: Estimation Theory", Prentice-Hall, Englewood Cliffs, N.J., 1993. Hand-out material.

Examination

An examination project in the form of a take-home exam is given at the end of the course. To pass the course requires at least 50% of the points from the project. To access the project further requires solving at least 80% of the problems during the course.


Sidansvarig Publicerad: må 13 jul 2020.