Search programme

​Use the search function to search amongst programmes at Chalmers. The study programme and the study programme syllabus relating to your studies are generally from the academic year you began your studies.

Syllabus for

Academic year
KBT115 - Advanced chemical reaction engineering
Avancerad kemisk reaktionsteknik
 
Syllabus adopted 2021-02-16 by Head of Programme (or corresponding)
Owner: MPISC
7,5 Credits
Grading: TH - Pass with distinction (5), Pass with credit (4), Pass (3), Fail
Education cycle: Second-cycle
Major subject: Chemical Engineering
Department: 21 - CHEMISTRY AND CHEMICAL ENGINEERING


Teaching language: English
Application code: 25111
Open for exchange students: Yes
Block schedule: A
Minimum participants: 12
Maximum participants: 50
Status, available places (updated regularly): Yes

Module   Credit distribution   Examination dates
Sp1 Sp2 Sp3 Sp4 Summer course No Sp
0107 Examination 7,5c Grading: TH   7,5c   15 Jan 2022 pm J,  11 Apr 2022 am J,  23 Aug 2022 am J

In programs

MPISC INNOVATIVE AND SUSTAINABLE CHEMICAL ENGINEERING, MSC PROGR, Year 1 (compulsory)
MPSYS SYSTEMS, CONTROL AND MECHATRONICS, MSC PROGR, Year 2 (elective)

Examiner:

Derek Creaser

  Go to Course Homepage


Eligibility

General entry requirements for Master's level (second cycle)
Applicants enrolled in a programme at Chalmers where the course is included in the study programme are exempted from fulfilling the requirements above.

Specific entry requirements

English 6 (or by other approved means with the equivalent proficiency level)
Applicants enrolled in a programme at Chalmers where the course is included in the study programme are exempted from fulfilling the requirements above.

Course specific prerequisites

Fundamental knowledge in Transport Processes.

Aim

The course introduces principles for the design and operation of multiphase reactors as well as reactor operating stability, dynamics and possiblities for operation with multiple steady states.

Learning outcomes (after completion of the course the student should be able to)

  • Understand the situations in which multiple steady states are possible for operation of reactors
  • Analyze the stability of steady states and the dynamic behaviour of a reactor of importance for control
  • Understand the interaction of reaction kinetics and transport limitations for various types of multiphase reactions
  • Comprehend the simplifications and applications of engineering models for transport in multiphase reactors compared to more rigorous models
  • Design and analyze the operation of a multiphase reactor at varying levels of detail
  • Carry out and critically analyze results of computer simulations of multiphase catalytic reactors 

Content

The course will begin with a review of fundamental concepts in chemical reaction engineering, i.e. mass and heat balances for ideal reactors. Special emphasis in the first part of the course will be given to heat effects on reactor operation on for example selectivity, autothermal operation, multiple steady-states and stability. The latter part of the course will concentrate on multiphase reactor design and operation and the interaction of reactions and transport limitations. Particular attention will be given to heterogeneous catalytic reactors with either a fixed or fluidized solid phase.

Organisation

Course participants shall undertake reactor simulation projects aimed at for example comparing different reactor designs or determining a range of critical operating conditions for a reactor process. The reactor simulations will be mainly carried out with MATLAB. The project will include a written report and oral presentation involving a critical analysis of the model used and results. Lectures will introduce some universal concepts of the course to the students. Assignments will train course participants in the application of the course concepts to the solution of problems. A study visit to a related industry or research lab will be organized.

Literature

Will be specified at least 2 weeks before start on course webpage.

Examination including compulsory elements

Satisfactory completion of the assignments, project and written exam are required for a passing grade. A higher grade can be obtained based on an optional part of the written exam.

The course examiner may assess individual students in other ways than what is stated above if there are special reasons for doing so, for example if a student has a decision from Chalmers on educational support due to disability.


Page manager Published: Mon 28 Nov 2016.