Search programme

​Use the search function to search amongst programmes at Chalmers. The study programme and the study programme syllabus relating to your studies are generally from the academic year you began your studies.

Syllabus for

Academic year
KBT145 - Biorefinery
Bioraffinaderi
 
Syllabus adopted 2020-02-20 by Head of Programme (or corresponding)
Owner: MPISC
7,5 Credits
Grading: TH - Pass with distinction (5), Pass with credit (4), Pass (3), Fail
Education cycle: Second-cycle
Major subject: Bioengineering, Energy and Environmental Systems and Technology, Chemical Engineering
Department: 21 - CHEMISTRY AND CHEMICAL ENGINEERING

 
Teaching language: English
Application code: 25119
Open for exchange students: Yes
Block schedule: B
Maximum participants: 60

Module   Credit distribution   Examination dates
Sp1 Sp2 Sp3 Sp4 Summer course No Sp
0107 Examination 7,5c Grading: TH   7,5c   26 Oct 2020 am J   04 Jan 2021 pm J,  24 Aug 2021 pm J

In programs

MPISC INNOVATIVE AND SUSTAINABLE CHEMICAL ENGINEERING, MSC PROGR, Year 2 (elective)
MPISC INNOVATIVE AND SUSTAINABLE CHEMICAL ENGINEERING, MSC PROGR, Year 1 (compulsory)
MPSES SUSTAINABLE ENERGY SYSTEMS, MSC PROGR, Year 2 (elective)

Examiner:

Merima Hasani

  Go to Course Homepage


Eligibility

General entry requirements for Master's level (second cycle)
Applicants enrolled in a programme at Chalmers where the course is included in the study programme are exempted from fulfilling the requirements above.

Specific entry requirements

English 6 (or by other approved means with the equivalent proficiency level)
Applicants enrolled in a programme at Chalmers where the course is included in the study programme are exempted from fulfilling the requirements above.

Course specific prerequisites

Basic course in organic chemistry
Unit operations in Chemical engineering

Aim

Within the next 50 years we will se a gradual transition from an oilbased society to a biobased society. In this transition there will be a necessity to find new process routes to produce some of the materials used today as well as new materials that can replace some of the materials normally used today.
The aim of this course is to give basic knowledge needed to understand how biomaterial can be used and how different biorefinery concepts can be developed based on both environmental and economical criteria.

Learning outcomes (after completion of the course the student should be able to)

After this course the students should have knowledge in:
  • Availability and chemical composition of the most common biomass sources, Including both global and national perspective as well as aspects of sustainable cultivation and use
  • Methods and processes (both current and potential future ones) available for recovery and post-treatment of biomass components, including theoretical, economical and sustainability aspects
and understanding of:
  • Ethical and societal issues raised by different approaches of utilizing biomass (e.g. use of the arable land resources and utilization of food-related biomass sources)

Content

The course will explore some general questions regarding structure and availability of different types of biomass and how these can be utilized as a feedstock for materials and chemicals from the processability and application point of view. The course can be divided in the following parts:

Part I, An overview:
What kinds of biomass and bio-building blocks are available (their structure, abundance, cultivation aspects and implications for use as raw materials) and how theses should be utilized? What kinds of biorefinery concepts can be developed from these based on technological, environmental and societal considerations? Different types and generations of biorefineries and their implications for a sustainable development will be discussed.

Part II, Principles of utilization of forest biomass (globally the most abundant lignocellulosic biomass) as a raw material basis for a biorefinery:
Forest biomass as a feedstock. How can current processes employed in valorization of forest biomass be further developed and diversified towards a wood-based biorefinery?

Part III, Current and future wood-based biorefineries and platforms
Through case studies of existing biorefinery concepts (including a study visit and a guest lecture) the need and feasibility of various future processes and products are discussed.

Organisation

The course consists of 16 lectures, a workshop on ethical issues related to different aspects of biomass utilization, a study visit and a project work (preformed in groups) on selected biomass components.

Literature

Selected chapters from "Wood Chemistry - The Ljungberg textbook" will be used as course literature, supplemented by lecture notes and literature that students refer to retrieve from the available e-books and -journals.

Examination including compulsory elements

The examination includes a written exam, a group project (including both an oral presentation and a written report), an active participation in the ethics workshop and the study visit. The final grade will be set by the written exam and extra credit points obtained from the group project.


Published: Mon 28 Nov 2016.