Search programme

​Use the search function to search amongst programmes at Chalmers. The study programme and the study programme syllabus relating to your studies are generally from the academic year you began your studies.

Syllabus for

Academic year
KTK042 - Nanomaterials chemistry
Nanomaterialkemi
 
Syllabus adopted 2019-02-19 by Head of Programme (or corresponding)
Owner: MPMCN
7,5 Credits
Grading: TH - Pass with distinction (5), Pass with credit (4), Pass (3), Fail
Education cycle: Second-cycle
Major subject: Chemical Engineering
Department: 21 - CHEMISTRY AND CHEMICAL ENGINEERING


Teaching language: English
Application code: 30126
Open for exchange students: Yes
Block schedule: D
Minimum participants: 8
Maximum participants: 48

Module   Credit distribution   Examination dates
Sp1 Sp2 Sp3 Sp4 Summer course No Sp
0115 Laboratory 1,5c Grading: UG   1,5c    
0215 Examination 6,0c Grading: TH   6,0c   13 Jan 2021 pm J   09 Apr 2021 pm J,  16 Aug 2021 am J

In programs

MPNAT NANOTECHNOLOGY, MSC PROGR, Year 1 (compulsory)
MPMCN MATERIALS CHEMISTRY, MSC PROGR, Year 1 (compulsory elective)
MPMCN MATERIALS CHEMISTRY, MSC PROGR, Year 2 (compulsory elective)

Examiner:

Martin Andersson

  Go to Course Homepage


Eligibility

General entry requirements for Master's level (second cycle)
Applicants enrolled in a programme at Chalmers where the course is included in the study programme are exempted from fulfilling the requirements above.

Specific entry requirements

English 6 (or by other approved means with the equivalent proficiency level)
Applicants enrolled in a programme at Chalmers where the course is included in the study programme are exempted from fulfilling the requirements above.

Course specific prerequisites

The students are expected to have a knowledge corresponding to the content in KOO093 - The synthesis, properties and structures of solid state materials, or the equivalent, as well as knowledge corresponding to the content in KTK095 - Surface Chemistry, or the equivalent.

Aim

The overall aim of the course is to provide an understanding of the basic and applied aspects of the chemistry of nanomaterials and to describe the importance of surface, size, shape, self-assembly and defect properties of a selection of typical nanomaterials. The course includes lectures, journal clubs and experimental laboratory work carried out under the supervision of a researcher in the field. Special emphasis is put on sustainability and energy aspects in the choice of the topics for the laboratory work.

Learning outcomes (after completion of the course the student should be able to)

  • Describe the most important concepts of nanomaterials.
  • Explain the formation of nanoparticles and mesoporous materials.
  • Describe different self-assembly processes used in nanomaterials preparation.
  • Explain specific details about the nanochemistry of common nanomaterials and their properties.
  • Describe concepts of templating, chemical patterning, soft lithography, layer-by-layer deposition and methods for surface functionalisation.
  • Exemplify applications in chemistry, physics, bioscience and materials science where the nanostructure is of central importance.
  • Carry out relevant laboratory work including synthesis and characterisation of nanomaterials, evaluation of properties and reporting.

Content

The course starts with describing the basic concepts of nanomaterials chemistry with a special emphasis on the importance of surface, size, shape, self-assembly, defects and application of nanomaterials. Following this a number of lectures are given to cover a selection of important nanomaterials and their specific properties. These lectures also explain different nanochemistry methods used in formation, self-assembly, templating, chemical patterning, soft lithography, layer-by-layer deposition and surface functionalisation of nanomaterials. Examples of important properties and applications of nanomaterials are described throughout the course and presentations from industry representatives are given to illustrate the relevance and opportunities of nanomaterials chemistry. Laboratory work is carried out on selected topics and reported. Journal club reviews of selected scientific papers are carried out and presented to student peers.

Organisation

The course includes about 12 lectures and experimental laboratory work carried out under the supervision of a researcher in the field and is to be reported in writing. Scientific papers will be selected for review and discussion within journal clubs and orally presented.

Literature

Notes from lectures and the course book
Concepts of Nanochemistry
Ludovico Cademartiri and Geoffrey A. Ozin
Wiley-VCH, Weinheim
ISBN: 978-3-527-32597-9

Examination including compulsory elements

The examination is based on a written exam, grades TH, and also includes approved written and oral presentations of laboratory work and journal clubs.


Page manager Published: Mon 28 Nov 2016.