Search programme

​Use the search function to search amongst programmes at Chalmers. The study programme and the study programme syllabus relating to your studies are generally from the academic year you began your studies.

Syllabus for

Academic year
TME230 - Structural dynamics - model validation
Strukturdynamisk modellvalidering
 
Syllabus adopted 2014-02-20 by Head of Programme (or corresponding)
Owner: MPAME
7,5 Credits
Grading: TH - Five, Four, Three, Fail
Education cycle: Second-cycle
Major subject: Mechanical Engineering, Civil and Environmental Engineering
Department: 30 - MECHANICS AND MARITIME SCIENCES


Teaching language: English
Application code: 03123
Open for exchange students: Yes
Block schedule: B
Maximum participants: 20

Module   Credit distribution   Examination dates
Sp1 Sp2 Sp3 Sp4 Summer course No Sp
0111 Examination 7,5c Grading: TH   7,5c   Contact examiner,  Contact examiner,  Contact examiner

In programs

MPAME APPLIED MECHANICS, MSC PROGR, Year 1 (compulsory elective)
MPAME APPLIED MECHANICS, MSC PROGR, Year 2 (elective)

Examiner:

Thomas Abrahamsson

  Go to Course Homepage


Eligibility:


In order to be eligible for a second cycle course the applicant needs to fulfil the general and specific entry requirements of the programme that owns the course. (If the second cycle course is owned by a first cycle programme, second cycle entry requirements apply.)
Exemption from the eligibility requirement: Applicants enrolled in a programme at Chalmers where the course is included in the study programme are exempted from fulfilling these requirements.

Course specific prerequisites

Courses in fundamental FEM and structural dynamics

Aim

To teach the use of model validation in computational structural dynamics, absolutely
necessary in aeronautical applications and very useful in many other disciplines.

Learning outcomes (after completion of the course the student should be able to)

Explain the use of validated computational models and define criteria for validation.
Set up and conduct validating vibration testing.
Screen test data for possible errors.
Calibrate structural dynamics computational models with test data using optimization of parameterized models.
Validate models using complementary tests. All steps for validation shall be undertaken and reported by each student.

Content

State-space representation. Observability and controllability. Process noise and signal noise. Statistical distribution of physical properties. Individual's behavior compared to nominal's behavior. Pretest planning, method of effective independence. Identifiability of parameters, Fisher's information theorem. Parameter estimation, Cramer-Rao parameter estimation bounds. System identification, state-space sub-space identification method. Vibration measurement, sensors and data acquisition systems. Experimental modal analysis, theory and practice, set-up, pitfalls. Expansion of experimental modes. Frequency response function estimates, filters. Tests with stepped-sine, swept-sine, random and transient excitations. Correlation criteria. Verification, calibration, validation. Calibration and validation metrics. Gauss-Newton minimization, regularization, Levenberg-Marquardt's method. Over-parameterization, parameter Hessian, Akaike's criterion.

Organisation

Lectures and excercise classes give theory. Computer assignments for pre-test planning, post-test screening, calibration and updating with commercial FE software and Matlab. Laboratory test.

Literature

Thomas Abrahamsson: Calibration and Validation of Structural Dynamics Models, Chalmers Applied Mechanics, Publication 2012-1, 2012

Examination including compulsory elements

Compulsory assignments reported on individual basis.


Page manager Published: Mon 28 Nov 2016.