Teaching language: English
Open for exchange students
Block schedule:
C
Course module 

Credit distribution 

Examination dates 
Sp1 
Sp2 
Sp3 
Sp4 
Summer course 
No Sp 
0102 
Examination 
7,5 c 
Grading: TH 




7,5 c




31 May 2016 pm M, 
05 Apr 2016 pm M, 
16 Aug 2016 am M 
In programs
MPAME APPLIED MECHANICS, MSC PROGR, Year 1 (compulsory elective)
MPENM ENGINEERING MATHEMATICS AND COMPUTATIONAL SCIENCE, MSC PROGR, Year 2 (elective)
Examiner:
Professor
Lars Davidson
Go to Course Homepage
Eligibility:
In order to be eligible for a second cycle course the applicant needs to fulfil the general and specific entry requirements of the programme that owns the course. (If the second cycle course is owned by a first cycle programme, second cycle entry requirements apply.)
Exemption from the eligibility requirement:
Applicants enrolled in a programme at Chalmers where the course is included in the study programme are exempted from fulfilling these requirements.
Course specific prerequisites
MTF072 Computational fluid dynamics (CFD) or Mechanics of Fluids or any
corresponding course
Aim
The object of the course is to give the students a thorough knowledge and understanding of modern,
advanced turbulence models for unsteady fluid flow simulations.
Learning outcomes (after completion of the course the student should be able to)
 Understand and outline the difference between LES, RANS, URANS, DES and hybrid LESRANS
 Derive the exact transport turbulence equations using tensor notation
 Describe the modeling assumptons, using tensor notation, in turbulence models
 Identify and interpret the different terms in the turbulence models presented in the course.
 Describe the difference between resolved and modelled Reynolds stresses
 Describe different approaches to handle the nearwall problem in LES
 Describe the advantages of secondmoment closures compared to eddyviscosity models
 Reproduce the different spatial filtering approaches in LES
 Derive the SGS models using tensor notation
 Understand and describe the concept of modelled (for example SGS) dissipation between resolved and modeled scales
 Describe the method how to prescribe unsteady, fluctuating inlet boundary conditions
 Be able to carry out an simulation with a commerical CFD code
Content
The development of computers and Computational Fluid Dynamics (CFD)
has made the numerical simulation of complex fluid flow, combustion,
aeroacoustics and heat transfer problems possible. Turbulent flow in
threedimensional, complex geometries  unsteady or steady  can be
dealt with. Presently CFD methods can replace, or complement, many
experimental methods; we can use a numerical wind tunnel instead of an
experimental one.
Today, most CFD simulations are carried out with traditional RANS
(ReynoldsAveraged NavierStokes). In RANS, we split the flow variables
into one timeaveraged (mean) part and one turbulent part. The latter is
modelled with a turbulence model such as keps or Reynolds Stress
Model. For many flows it is not appropriate to use RANS, since the
turbulent part can be very large and of the same order as the mean.
Examples are unsteady flow in general, wake flows or flows with large
separation. For this type of flows, it is more appropriate to use Large
Eddy Simulation (LES). In order to extend LES to high Reynolds number
flows new methods have been developed. These are called DES (Detached
Eddy Simulation), URANS (Unsteady RANS) or Hybrid LESRANS. They are
all unsteady methods and they are a mixture of LES and RANS. In
aeroacoustics the noise is generated by turbulence. The best way to
accurately predict largescale turbulence is to carry out an unsteady
simulation of the flow field (i.e. LES, DES, hybrid LESRANS or URANS).
After that the noise is predicted separately in CAA (Computational
AeroAcoustics).
In LES, DES, URANS and Hybrid LESRANS the largescale part of the
turbulence is solved for by the discretized equations whereas
thesmallscale turbulence is modelled. The definition of ''largescale''
varies in the different methods. Furthermore, the limit between
''largescale'' and ''smallscale' is often not well defined. Since
turbulence is threedimensional and unsteady, it means that in all the
methods the simulations must always be carried out as
threedimensional, unsteady simulations.
We will address questions like:
 How should I make my mesh?
 why should I in LES use a nondissipative discretization scheme?
 is it necessary to used central differencing in DES and URANS?
 what is the different between LES and unsteady RANS?
 what turbulence models can I use in DES and unsteady RANS?
 to enhance numerical stability, can a turbulence model with high dissipation be used?
 how do I prescribe inlet boundary conditions?
 inlet boundary conditions: can I use steady inlet boundary conditions? which is best, synthesized turbulence or a precursor DNS?
In the first project, we will learn how to interpretate results from
an unsteady simulation. We will also use a commercial CFD package to
evaluate different RANS turbulence models.
When doing LESURANS/DES, you have to ask yourself similar questions as when doing measurements:
 when is the flow fully developed so that I can start timeaveraging?
 for how long time do I need to timeaverage?
 is it enough if I get accurate mean flow or do I also need accurate resolved turbulent stresses?
 how do I estimate the quality of my LES or hybrid LESRANS? Spectra? 2point correlations? SGS dissipation?
The
most important drawback/bottleneck of LES is the requirement to use
very fine grid near walls. The grid must be fine in all directions, not
only the wallnormal direction. Much of the research on LES is today
focused in getting around this bottleneck. One approach is hybrid
LESRANS. In this method RANS is used near walls and LES is used in the
remaining part of the domain.
.For more information
.Lecturer's homepage
Organisation
Two/three lectures per week will be given.
Three projects should be carried out by the students.
1.
The students will be given data from a numerical simulation (LES or
DNS). The data will be twodimensional, timeaveraged velocity
(recirculating flow) and pressure fields, the Reynolds stresses. The
data will be analyzed. First we will study the velocity fields and find
out how large are the forces (per unit volume) due to pressure gradient,
turbulent Reynolds and viscous stresses. The forces ska balance the
acceleration term on the lefthand side.
Next we analyze the transport equations of the turbulent
Reynolds
stresses, u_iu_j. We identifiy regions of large production terms, which
should correspond to regions of large Reynolds stresses. Reynolds
stresses will be computed using the eddyviscosity assumption, and these
will be compared to their exact counterparts.
In the second part
of this assignement, the students will use a commercial CFD packade to
compute flows using RANS. Different turbulence models will be evaluated.
2.
The students will be given instantaneous threedimensional data from a
DNS (Direct Numerical Simulation) of channel flow. From these data
various exact terms in the transport equations of turbulent quantities
(turbulent kinetic energy k or shear stress u'v', for example) will be
compared by the corresponding modeled terms. Different filtered
quantities relevant for LES will be computed such a SGS stresses,
dynamic Leonard stresses. Since the instantaneous fields are given in
the database, the students will also be given the opportunity to use FFT
to obtain spectra from twopoint correlations, to create PDFs
(probabilty density function) etc.
Literature
Lecture notes can be downloaded from the course home page
Examination
Written reports of exercises are one part of the examination. A written exam is the other part of the examination.