Teaching language: English
Open for exchange students
Block schedule:
D
Course module 

Credit distribution 

Examination dates 
Sp1 
Sp2 
Sp3 
Sp4 
Summer course 
No Sp 
0111 
Examination 
7,5c 
Grading: TH 




7,5c




31 May 2016 pm EKL, 
06 Apr 2016 am M, 
22 Aug 2016 am M 
In programs
MPAPP APPLIED PHYSICS, MSC PROGR, Year 1 (elective)
MPCAS COMPLEX ADAPTIVE SYSTEMS, MSC PROGR, Year 1 (elective)
MPNAT NANOTECHNOLOGY, MSC PROGR, Year 1 (compulsory elective)
MPPAS PHYSICS AND ASTRONOMY, MSC PROGR, Year 2 (elective)
Examiner:
Professor
Göran Johansson
Professor
Bernhard Mehlig
Replaces
MCC010
Statistical physics II MCC011
Nonequilibrium processes in physics, chemistry and biology TIF105
Stochastic processes in physics, chemistry and biology
Go to Course Homepage
Eligibility:
In order to be eligible for a second cycle course the applicant needs to fulfil the general and specific entry requirements of the programme that owns the course. (If the second cycle course is owned by a first cycle programme, second cycle entry requirements apply.)
Exemption from the eligibility requirement:
Applicants enrolled in a programme at Chalmers where the course is included in the study programme are exempted from fulfilling these requirements.
Course specific prerequisites
Mathematical analysis and Algebra. Introductory level Thermodynamics and Statistical Physics, Classical and Quantum Mechanics
Aim
The great majority of physical, chemical, and biological processes occur
outside the thermodynamic equilibrium. How do we describe manyparticle
system driven away from equilibrium, or evolving towards the equilibrium
due to an interaction with an environment? In contrast to the universality
of the thermodynamics, the nonequilibrium evolution is system specific
and requires individual approach. The purpose of the course is to
introduce basic concepts of kinetic theory and stochastic processes,
and to study practical tools to investigate nonequilibrium states. We will discuss the origin
of irreversible evolution and dissipation, hierarchy of relaxation processes, transport phenomena and noise, Brownian motion.
The course includes a selection of applications to quantum solid state systems,
chemical reaction kinetics, and soft matter like colloidal dispersions, polymers, gels,
glasses and biological systems.
Learning outcomes (after completion of the course the student should be able to)
After this course, the student should have acquired a general knowledge of stochastic processes and their use to describe the time evolution of systems in nature. More specifically, the student should be able to:
* describe basic concepts of the kinetic theory for classical and quantum many particle systems
* describe the origin of irreversible evolution of physical, chemical, and biological systems, and the hierarchy of relaxation processes
* practically solve transport problems, as well as analyze dissipative and fluctuation phenomena, and the effects of an environment.
Content
The following topics are covered:
Statistical description of a dissipative macroscopic system and origin of irreversible evolution. Stochastic processes and basic distributions.
Boltzmann equation and transport theory.
Langevin theory of classical and quantum Brownian motion.
Fluctuation and noise.
Applications to physical, chemical and biological systems.
The first half of the course deals with general concepts of nonequilibrium statistical physics and methods to describe dissipative and transport processes in manybody systems. Starting with a simple example of a random walk the basic concepts in probability theory and stochastic processes are introduced. More complex systems are studied via the Boltzmann equation and by considering Markov processes. The latter introduces the study of Master, FokkerPlanck and Langevin equations.
The student can choose two different directions for the second part of the course:
1. Quantum nonequilibrium systems
Here we consider applications in modern solid state physics, quantum electronics and optics. We study methods to describe the state and evolution of quantum nonequilibrium systems, linear response theory, problem of quantum noise, relation between fluctuations and dissipation, behavior of quantum particle in an environment.
2. Transport in soft matter and biological systems
Here we study applications in complex systems. We study methods to describe transport processes in various systems like polymers, colloids, soft matter. Description of chemical reactions and Brownian motors. Applications to systems in phsyics, chemistry and biology.
Organisation
The course is based on a series of lectures and exercises. The second half of the course can be organized as a project work.
Literature
The content of the course will be covered in lecture notes. Additional reading material (course book) will be specified on the course homepage.
Examination
Written examination and home assignments.