Search course

Use the search function to find more information about the study programmes and courses available at Chalmers. When there is a course homepage, a house symbol is shown that leads to this page.

Graduate courses

Departments' graduate courses for PhD-students.

​​​​
​​

Syllabus for

Academic year
SSY150 - Multimedia and video communications
 
Syllabus adopted 2015-02-11 by Head of Programme (or corresponding)
Owner: MPCOM
7,5 Credits
Grading: TH - Five, Four, Three, Not passed
Education cycle: Second-cycle
Major subject: Computer Science and Engineering, Electrical Engineering
Department: 32 - ELECTRICAL ENGINEERING


Teaching language: English
Open for exchange students
Block schedule: B

Course module   Credit distribution   Examination dates
Sp1 Sp2 Sp3 Sp4 Summer course No Sp
0107 Examination 7,5 c Grading: TH   7,5 c   30 May 2016 am M,  07 Apr 2016 am M,  18 Aug 2016 pm SB

In programs

MPCOM COMMUNICATION ENGINEERING, MSC PROGR, Year 1 (compulsory elective)
MPEES EMBEDDED ELECTRONIC SYSTEM DESIGN, MSC PROGR, Year 1 (elective)

Examiner:

Professor  Irene Gu



  Go to Course Homepage

Eligibility:


In order to be eligible for a second cycle course the applicant needs to fulfil the general and specific entry requirements of the programme that owns the course. (If the second cycle course is owned by a first cycle programme, second cycle entry requirements apply.)
Exemption from the eligibility requirement: Applicants enrolled in a programme at Chalmers where the course is included in the study programme are exempted from fulfilling these requirements.

Course specific prerequisites

Basic knowledge on linear signals and systems. Basic knowledge on digital communications, or data communications.

Aim

The course is designed to teach the basic knowledge on compression methods for multimedia data, and on the issues related to multimedia data communication through error prone IP networks. The course is designed to meet the growing interest in multimedia data compression and communications. Different from the conventional data transmission, compressed video and multimedia signals usually require large bandwidths, and are prone to network distortions such as packet losses and delay due to congestion in the network. Re-transmission is often not possible due to real-time constraint. This course addresses issues on multimedia and video data compression, and transmission of compressed multimedia data through Internet/wireless IP networks. Students are expected to learn the basic knowledge on multimedia signal analysis and compression; on basic Internet multimedia protocol stack, on losses and protection of compressed multimedia data, and on network-adaptive multimedia communications. Further, students are expected to gain insight into the state-of-the-art technologies from our guest lecturer. The course is a combination of lectures and laboratory projects where students can learn quickly through hands-on experience.

Learning outcomes (after completion of the course the student should be able to)

  • describe and apply basic methods for audio/speech, image and video compression;
  • describe parameters in human auditory and visual systems that affect the perception of multimedia data quality;
  • apply objective quality measures for audio/image/video data;
  • describe the  protocol stack for transporting multimedia data;
  • list the main reasons for distortions, and indices for Quality of Service (QoS) in transporting multimedia data;
  • use models for erasure channels and packet losses;
  • apply basic packet error protection, correction and concealment;
  • perform end-to-end performance optimization of multimedia data.

Content

1. Multimedia signal compression
  • Fundamentals on speech/audio compression: models and compression methods;
  • Fundamentals on image and video compression: energy compaction by transformation, subband filter/wavelets, motion compensation, and related standards;
  • Perceptual properties of hearing and vision, objective quality measures.
2. Transportation protocols, packet losses and protection
  • IP networks for multimedia;
  • Protocol stacks for transporting multimedia data;
  • Packet loss vs bit loss;
  • Error protection and resilience on multimedia packets;
  • Models for erasure channel and packet losses;
  • Network-adaptive compression and end-to-end video performance optimization.
3. Recent advances in multimedia communication
  • New standards;
  • 3D-TV;
  • Recent research development in Ericsson, Sweden.

Organisation

The course consists of lectures and exercise courses, three projects and project demonstrations, and a tutorial on Matlab for Beginners.

Literature

"Compressed video communications" by Abdul H.Sadka, ISBN: 978-0-470-84312-3, 2002
"Video processing and communications" by Yao Wang, Jörn Qstermann, and Ya-Qin Zhang, ISBN:013-017547-1
E-books may be found in Chalmers Library

Examination

Exam grade is based on scores from three laboratory project reports, project presentations, and a written exam (covering some basic concepts and theoretical issues). Projects and presentations are mandatory.


Page manager Published: Thu 04 Feb 2021.