Search course

Use the search function to find more information about the study programmes and courses available at Chalmers. When there is a course homepage, a house symbol is shown that leads to this page.

Graduate courses

Departments' graduate courses for PhD-students.


Syllabus for

Academic year
EEN016 - Lithium-ion battery systems for vehicles and large-scale energy storage
Litiumjonbatterisystem för fordon och stationära energilager
Syllabus adopted 2019-02-13 by Head of Programme (or corresponding)
Owner: MPEPO
7,5 Credits
Grading: TH - Pass with distinction (5), Pass with credit (4), Pass (3), Fail
Education cycle: Second-cycle
Major subject: Electrical Engineering

The course is full. For waiting list, please contact the director of studies:
Teaching language: English
Application code: 21113
Open for exchange students: No
Block schedule: C+
Minimum participants: 24
Maximum participants: 48

Module   Credit distribution   Examination dates
Sp1 Sp2 Sp3 Sp4 Summer course No Sp
0119 Examination 7,5 c Grading: TH   7,5 c   14 Jan 2021 pm J   08 Apr 2021 pm J,  18 Aug 2021 am J

In programs



Torbjörn Thiringer

  Go to Course Homepage


General entry requirements for Master's level (second cycle)
Applicants enrolled in a programme at Chalmers where the course is included in the study programme are exempted from fulfilling the requirements above.

Specific entry requirements

English 6 (or by other approved means with the equivalent proficiency level)
Applicants enrolled in a programme at Chalmers where the course is included in the study programme are exempted from fulfilling the requirements above.

Course specific prerequisites

Basic course in Physics, Bachelor level
Basic course in Circuit Analysis, Bachelor level
Degree of Bachelor


The aim of the course is to give the students a basic understanding of lithium-ion batteries. Further the aim is to give the students practical skills in experimental characterization and design of a lithium-ion battery cell. Finally an important goal is to give the students a background in the assembly of cells to a battery as well as important aspects of its control and safety aspects in use.

Learning outcomes (after completion of the course the student should be able to)

  • Describe the parts in  Li-Ion Battery, materials and functionalities
  • Make calculations of capacity and energy efficiency of a LiB.
  • Use key equations for the physical modelling of a LiB
  • Perform EIS sweeps and capacity determinations
  • Make EECM (Equivalent electrical circuit models) of LiB EIS sweeps, with various complexities such as ZARC, and E-R-RC*n links
  • Interpret EECM of lower complexity into physical foundations in LiB
  • Describe a BMS and present its needed functionalities
  • Present important safety aspects of a LiB
  • Build a coin-cell provided that the needed equipment is at hand under guidance
  • Analyze a battery model using Comsol
  • Set up a test description for performing an ageing test of a LiB
  • Describe key ageing factors in LiB and be able to perform basic approximate ageing calculations
  • Give examples how batteries can be design to lower negative environmental impact.
  • Describe how battery systems can be designed for different applications
  • Perform thermal calculations on a LiB cell and system
  • Perform energy and power calculations on supercapacitors as well as describe to key parts of a supercapacitor


There are three main parts of the course
  1. Electrochemical background for a lithium-ion battery functionality
  2. Model building for the voltage-current behavior of the battery (EECM)
  3. Composition of battery systems and important battery usage aspects
A project work with comprising practical and theoretical aspects is an important part of the course. Here, the course participants use COMSOL to make simulations on a battery cell, use knowledges from tutorials, lectures and literature to make theoretical calculations as well as results from measurements on an own-built coin cell.


The course consists of 18 lectures (2*45 min), 8 tutorials (2*45 min), two practical laboratory exercises (2*4h) as well as 2 supervised computer exercises. In addition, there is a project work on 40 hours, that links the laboratory exercises with the lectures, tutorials and literature.


Course compendium: "Battery cell modelling from an electrotechnical perspective", Evelina Wikner, Zeyang Geng, Torbjörn Thiringer

Course book: "Batteries for Electric vehicles - Materials and Electrochemistry", ISBN: 9781316090978, Berg, Helena.

Selection of research papers.

Examination including compulsory elements

Written exam (100%). Approved laboratory exercises and report. Grading scale, U 3,4,5.

Page manager Published: Thu 04 Feb 2021.