Search course

Use the search function to find more information about the study programmes and courses available at Chalmers. When there is a course homepage, a house symbol is shown that leads to this page.

Graduate courses

Departments' graduate courses for PhD-students.

​​​​
​​

Syllabus for

Academic year
DAT410 - Design of AI systems  
Design av AI-system
 
Syllabus adopted 2020-02-20 by Head of Programme (or corresponding)
Owner: MPDSC
7,5 Credits
Grading: TH - Pass with distinction (5), Pass with credit (4), Pass (3), Fail
Education cycle: Second-cycle
Major subject: Computer Science and Engineering, Software Engineering
Department: 37 - COMPUTER SCIENCE AND ENGINEERING


Teaching language: English
Application code: 87113
Open for exchange students: Yes
Block schedule: D

Module   Credit distribution   Examination dates
Sp1 Sp2 Sp3 Sp4 Summer course No Sp
0119 Written and oral assignments 7,5c Grading: TH   7,5c    

In programs

MPDSC DATA SCIENCE AND AI, MSC PROGR, Year 1 (compulsory)
MPALG COMPUTER SCIENCE - ALGORITHMS, LANGUAGES AND LOGIC, MSC PROGR, Year 1 (elective)
MPALG COMPUTER SCIENCE - ALGORITHMS, LANGUAGES AND LOGIC, MSC PROGR, Year 2 (elective)

Examiner:

Dag Wedelin

  Go to Course Homepage


Eligibility

General entry requirements for Master's level (second cycle)
Applicants enrolled in a programme at Chalmers where the course is included in the study programme are exempted from fulfilling the requirements above.

Specific entry requirements

English 6 (or by other approved means with the equivalent proficiency level)
Applicants enrolled in a programme at Chalmers where the course is included in the study programme are exempted from fulfilling the requirements above.

Course specific prerequisites

A course in programming in a general-purpose language (e.g. C/C++/Java/Python or similar). One course in mathematics (e.g. calculus, linear algebra, applied mathematical thinking), and one course in mathematical statistics. The course "Introduction to Data Science and AI" (DAT405) or similar. We strongly recommend that the student has taken a course in Machine learning, for example DAT340, TDA233 or similar, or that such a course is taken in parallel alongside this course.

Aim

The purpose of the course is to explain how some different well-known AI-systems work, provide insight in how such systems are built, and practice to develop such systems. The course takes a broad perspective and includes related areas such as data science, algorithms and optimization as appropriate.

Learning outcomes (after completion of the course the student should be able to)

On successful completion of the course the student will be able to:

Knowledge and understanding
  • Provide an overview of different applications of AI and related areas.
  • Describe how some different well-known AI-systems work and how they are used.
  • Explain how AI approaches relate to other kinds of advanced information processing. 
Skills and abilities
  • Identify problems that can be solved with AI and other advanced computational techniques.
  • Design simpler Ai systems for different applications, including model choices and system design.
  • Implement AI systems with programming in combination with different tools and programming libraries.
Judgement and approach
  • Discuss advantages and disadvantages of different models and approaches in AI.
  • Reflect over fundamental possibilities and limitations of current AI approaches. 
  • Critically analyze and discuss AI applications with respect to ethics, privacy and societal impact.
  • Show a reflective attitude in all learning.

Content

The course teaches design of AI systems in several different ways:
  • Reading of papers and lectures describing different AI systems and their design (eg. AlphaZero, Watson, systems for self-driving cars,…)
  • Opportunities to see and try out the implementation of different simpler AI systems. 
  • Own problem solving in the form of design and implementation of simpler AI systems.
  • Discussions about possibilities and limitations of AI, ethics and societal impact. 

Organisation

Lectures and modules with exercises and mini-projects – these are mainly done in groups to two persons.

Literature

Reading in the form of papers etc. , to be presented as the course proceeds.

Examination including compulsory elements

Assignments and mini-projects. No exam.


Page manager Published: Thu 04 Feb 2021.