Search course

Use the search function to find more information about the study programmes and courses available at Chalmers. When there is a course homepage, a house symbol is shown that leads to this page.

Graduate courses

Departments' graduate courses for PhD-students.


Syllabus for

Academic year
DAT300 - Data-driven support for cyber-physical systems
Datadrivet stöd för cyberfysiska system
Syllabus adopted 2017-02-20 by Head of Programme (or corresponding)
Owner: MPCSN
7,5 Credits
Grading: TH - Five, Four, Three, Fail
Education cycle: Second-cycle
Major subject: Computer Science and Engineering, Information Technology

Teaching language: English
Application code: 12112
Open for exchange students: No
Maximum participants: 21

Module   Credit distribution   Examination dates
Sp1 Sp2 Sp3 Sp4 Summer course No Sp
0113 Project 7,5 c Grading: TH   7,5 c    

In programs



Magnus Almgren

  Go to Course Homepage


DAT285   Masterclass in Areas of advance


In order to be eligible for a second cycle course the applicant needs to fulfil the general and specific entry requirements of the programme that owns the course. (If the second cycle course is owned by a first cycle programme, second cycle entry requirements apply.)
Exemption from the eligibility requirement: Applicants enrolled in a programme at Chalmers where the course is included in the study programme are exempted from fulfilling these requirements.

Course specific prerequisites

Bachelor's degree in Computer Science, or equivalent is required.
The student should have successfully completed the following courses (or equivalent):
  • Introduction to ComputerEngineering 7.5 hec,
  • Algorithms, 7.5 hec,
  • Data Structures, 7.5 hec,
  • at least 7.5 hec in programming.
We also expect 7.5 hec or equivalent in one of the four areas: Computer Communication  Operating Systems, Computer Security or Distributed Systems.


The course gives an introduction to new cyber-physical systems, such as the smart grid, where data has become very important for adaptive operations and with an increased dependence on information and communication technologies (ICT). Topics in the course are focused on new methods in the intersection of computer science and other domains, to support distributed operations, data-processing and cyber security.

Learning outcomes (after completion of the course the student should be able to)

On successful completion of the course the student will be able to:

1. Knowledge and understanding

  •  List cyber-physical systems, and in particular ICT methods for supporting adaptiveness and cybersecurity based on the students chosen area,
  • Discuss current research and development in the area of such cyber-physical systems, in order to meet the requirements of sustainable development in (security, economic and ecological terms).

2. Skills and abilities
  • Design and analyse methods, algorithms, protocols for adaptive and cybersecure cyber-physical systems, such as smart power grid networks,
  • Explain complex algorithms and concepts,
  • Plan and organize a small team project and document the work and the result in a report.

3. Judgement and approach
  • Present complex material to a small audience,
  • Improve skills in running a small team project, practice technical writing,
  • Judge the relevance of the literature in a topic.


The content is focused on distributed computing and systems, data processing, information and systems security, networking and computer communication in the context of new cyber-physical systems. There are lectures from faculty to give an overview of the areas of the course, and invited presentations from industry to talk about actual systems, as well as in-depth presentations by the student themselves on specific research topics relating to their projects.

Typically, the lectures include an introduction to the new types of cyber-physical systems, e.g. the smart grid. Open research problems in relation to distributed operations, data-processing and cyber security are discussed, e.g. through lectures on streaming, security and privacy, and communication suitable in this domain. Examples of cyber-physical systems important for society are presented, e.g. the smart grid from both on the transmission and distribution perspective. The course starts with an introduction to power systems, to give students enough knowledge of terminology to understand papers connected to the smart grid.


This project course setup includes a short sequence of introductory lectures given by lecturers and invited talks from the industry, that will prepare the students and allow their project groups to share a wider common background. The students will then choose advanced topics related to their chosen projects, to study a set of problems in depth. These topics are presented by the students to their peers and discussed in the classroom. In addition, the students will write an individual report about their chosen topic and a project report with their group.


Course literature to be announced the latest 8 weeks prior to the start of the course.

Examination including compulsory elements

The course is examined by a written report on the project conducted by the student, and oral presentation, including demonstration. The written report is normally carried out in groups of 2-3 students. The students also need to complete a short individual report, reflecting on the content of the research articles chosen as a basis for the oral presentation.

In order to pass the course the student is expected to also participate actively in seminars, including presentations and discussion of new topics.

Page manager Published: Thu 04 Feb 2021.