Search course

Use the search function to find more information about the study programmes and courses available at Chalmers. When there is a course homepage, a house symbol is shown that leads to this page.

Graduate courses

Departments' graduate courses for PhD-students.

​​​​
​​

Syllabus for

Academic year
MVE155 - Statistical inference
 
Syllabus adopted 2014-02-13 by Head of Programme (or corresponding)
Owner: MPENM
7,5 Credits
Grading: TH - Five, Four, Three, Not passed
Education cycle: Second-cycle
Major subject: Mathematics
Department: 11 - MATHEMATICAL SCIENCES


Teaching language: English
Open for exchange students

Course module   Credit distribution   Examination dates
Sp1 Sp2 Sp3 Sp4 Summer course No Sp
0107 Examination 7,5c Grading: TH   7,5c   17 Mar 2015 pm V,  08 Jun 2015 pm J,  24 Aug 2015 am V

In programs

TKITE SOFTWARE ENGINEERING, Year 3 (compulsory elective)
MPBME BIOMEDICAL ENGINEERING, MSC PROGR, Year 1 (compulsory elective)
MPENM ENGINEERING MATHEMATICS AND COMPUTATIONAL SCIENCE, MSC PROGR, Year 1 (compulsory)

Examiner:

Professor  Serik Sagitov



  Go to Course Homepage

Eligibility:


In order to be eligible for a second cycle course the applicant needs to fulfil the general and specific entry requirements of the programme that owns the course. (If the second cycle course is owned by a first cycle programme, second cycle entry requirements apply.)
Exemption from the eligibility requirement: Applicants enrolled in a programme at Chalmers where the course is included in the study programme are exempted from fulfilling these requirements.

Course specific prerequisites

A first course in probability and statistics worth of 7.5 credits.

Aim

To give the students insight in tecniques for treating multiple sample data, sampling designs, and appropriate statistical tests for this kind of data

Learning outcomes (after completion of the course the student should be able to)

- summarize multiple sample data in a meaningful and informative way, 

- recognize several basic types of statistical problems corresponding to various sampling designs, 

- estimate relevant parameters and perform appropriate statistical tests for multiple sample data sets.

Content

This is a second course in mathematical statistics introducing the following key topics of statistical inference: 

 - sampling designs and summarizing data 

- maximum likelihood estimation of parameters, bootstrap 

- parametric and non-parametric inference 

- the analysis of variance, linear least squares, categorical data 

- elements of Bayesian inference.

Organisation

Lectures, exercises, and optional computer assignments.

Literature

Mathematical statistics and data analysis by John A. Rice.

Lecture notes downloadable from the internet.

Examination

Written examination.
Bonus points for optional assignments work only for the first scheduled examination.


Page manager Published: Thu 04 Feb 2021.